Genome-Wide Prediction of cis-Regulatory Regions Using Supervised Deep Learning Methods

Abstract Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES, the first supervised deep learning approach for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of…


Link to Full Article: Genome-Wide Prediction of cis-Regulatory Regions Using Supervised Deep Learning Methods

Pin It on Pinterest

Share This