Introduction & FAQs

The below lists various introductions or FAQs on Artificial Intelligence technicals including Neural Networks, Fuzzy Logic, Genetic Algorithms, Natural Language Processing and others.

Introductions

Below is a list of materials that introduces the reader to the field of Artificial Intelligence. These materials are targeted at the novice AI practitioner. Students who are just learning the field may also find this material useful.

 

Definitions

Artificial intelligence (AI) is the intelligence exhibited by machines or software. It is also the name of the academic field of study which studies how to create computers and computer software that are capable of intelligent behavior. [from Wikipedia]

Machine learning (ML) is a subfield of computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. Machine learning explores the construction and study of algorithms that can learn from and make predictions on data. [from Wikipedia]

Artificial Neural Networks (ANNs)In machine learning and cognitive science, artificial neural networks (ANNs) are a family of statistical learning models inspired by biological neural networks (the central nervous systems of animals, in particular the brain) and are used to estimate or approximate functions that can depend on a large number of inputs and are generally unknown. [from Wikipedia]

Deep Learning (deep machine learning, or deep structured learning, or hierarchical learning, or sometimes DL) is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using model architectures, with complex structures or otherwise, composed of multiple non-linear transformations. [from Wikipedia]

Genetic Algorithm (GA) is a search heuristic that mimics the process of natural selection. This heuristic (also sometimes called a metaheuristic) is routinely used to generate useful solutions to optimization and search problems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which generate solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. [from Wikipedia]

Fuzzy logic is a form of many-valued logic that deals with approximate, rather than fixed and exact reasoning. Compared to traditional binary logic (where variables may take on true or false values), fuzzy logic variables may have a truth value that ranges in degree between 0 and 1. Fuzzy logic has been extended to handle the concept of partial truth, where the truth value may range between completely true and completely false. [from Wikipedia]

Cognitive computing (CC) makes a new class of problems computable. It addresses complex situations that are characterized by ambiguity and uncertainty; in other words it handles human kinds of problems. In these dynamic, information-rich, and shifting situations, data tends to change frequently, and it is often conflicting. The goals of users evolve as they learn more and redefine their objectives. To respond to the fluid nature of users’ understanding of their problems, the cognitive computing system offers a synthesis not just of information sources but of influences, contexts, and insights. To do this, systems often need to weigh conflicting evidence and suggest an answer that is “best” rather than “right” [from Wikipedia]

Neuromorphic engineering also known as neuromorphic computing, is a concept developed by Carver Mead, in the late 1980s, describing the use of very-large-scale integration (VLSI) systems containing electronic analog circuits to mimic neuro-biological architectures present in the nervous system. In recent times the term neuromorphic has been used to describe analog, digital, and mixed-mode analog/digital VLSI and software systems that implement models of neural systems (for perception, motor control, or multisensory integration). [from Wikipedia]

 

General AI Introduction

 

Wikipedia Pages

These wiki pages give a good overview of each of the subject areas, and contain alot of additional references and links to other resources.

 

Specific Areas

Neural Networks:

Deep Learning:

Fuzzy Logic:

Genetic Algorithms:

 


 

FAQs

Below are a series of FAQs on the topic of Artificial Intelligence and Machine Learning.

 


 

Other Useful Information

Other useful information that introduces you to the area of AI.

 


 

Glossary of Terms

Below is a list of common acronyms used in this directory:

  • AI – Artificial Intelligence
  • AGI – Artificial General Intelligence
  • CC – Cognitive Computing
  • ML – Machine Learning
  • DL – Deep Learning
  • ANN – Artificial Neural Network
  • NN – same as above: ANN
  • GA – Genetic Algorithms
  • NLP – Natural Language Processing
  • FL – Fuzzy Logic
  • GPU – Graphics Processor Unit
  • FPGA – Field Programmable Gate Array

Other More Detailed Glossaries:

 


 

Kids Clubhouse

  • Computer Clubhouse Network – An after-school learning environment for kids to explore their own interests and learn about technology.

Check out the "What is Machine Learning?" Videos

Directory Page Curator – Volunteers Wanted

Why not volunteer to become one of the Directory Page Curator’s and help keep the neurons.ai directory up to date and accurate while also giving you an opportunity to promote yourself and your company within a related topic page. We are currently looking for curators for all of our directory categories so please feel free to contact us.

Your Name

Your Name

Your Position

Your Profile Description and Promotion Here

http://CompanyWebsite.com

Sponsored Link

Support neurons.ai and get your AI resource noticed with a sponsored link

Share this page with your friends or network

Facebooktwitterredditpinterestlinkedintumblrmail

Pin It on Pinterest

Share This